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REFERENCE PUBLICATION

A SHADOWGRAPH STUDY OF SPACE TRANSPORTATION SYSTEM (STS):
THE SPACE SHUTTLE LAUNCH VEHICLE (SSLYV)

INTRODUCTION

This report, the second in a series of shadowgraph studies of various launch vehicle configura-
tions, presents shadowgraphs of the space transportation system (STS), the space shuttle launch vehicle
(SSLV), for the trisonic Mach range of 0.6 to 5.0. The first report! presented shadowgraphs of two pro-
posed Shuttle-C configurations. Shadowgraphs of the SSLV at angles-of-attack of 0° and —4° and roll
angles of 90° are shown for the majority of the Mach range. The enclosed shadowgraphs present a pic-
torial view of the flow fields over the STS configuration. Marshall Space Flight Center’s (MSFC’s)
14-x14-inch trisonic wind tunnel has been used throughout the development of the space shuttle pro-
gram. These shadowgraphs are a compilation of shadowgraphs taken at MSFC over the past 15 years.2-7

This report presents shadowgraphs for the space shuttle launch vehicle in a concise format, offers
a means of easy transfer of the data to interested parties, and documents the results for future study.

MODEL AND FACILITY DESCRIPTION

Facility Description

The MSFC 14-x14-inch trisonic wind tunnel is an intermittent blowdown tunnel which operates
by high pressure air flowing from storage to either vacuum or atmosphere conditions. The transonic test
section, with variable porous walls, provides a Mach number range from 0.2 to 2.0. A solid-wall super-
sonic test section provides the entire range from 2.74 to 5.0 with one set of automatically actuated con-
tour blocks. Downstream of the test section is a hydraulically controlled pitch sector that provides the
capability of testing up to 20 angles-of-attack from —10° to +10° during each run. Sting offsets are avail-
able for obtaining various maximum angles-of-attack up to 90°. This is further detailed in reference 8.
The MSFC 14-x14-inch trisonic wind tunnel facility is shown in figure 1.

Model Description

The model is a 0.004 scale replica of the space shuttle launch vehicle consisting of the orbiter
(ORB), external tank (ET), and two solid rocket boosters (SRB’s) as shown in figures 2 through 4. The
vehicle is described by the space shuttle level II interface control document, ICD Number 2-0001, Revi-
sion F, dated January 31, 1980. The space shuttle integrated vehicle is shown in figure 2.

Two ORB models were used throughout the program. One configuration was fabricated to the
OV101 outer mold lines, while the other model was fabricated to the OV 102 outer mold lines. The mold
lines of the two configurations do not vary significantly. Figure 3 shows the general ORB geometry. All
of the major aerodynamic surfaces were modeled, including the wing, inboard and outboard elevons,



body flap, and vertical tail. The orbital maneuvering system (OMS) pods and nozzles were also simu-
lated; however, the main propulsion system (MPS) nozzles could not be simulated because of the model
sting arrangement. The elevon deflections were set manually by use of interchangeable elevon brackets.
The difference in ORB models and elevon settings had no noticeable effect discernible from shadow-
graphs. This is seen in the comparison of figures 5 and 6. The enclosed shadowgraphs are a compilation
of shadowgraphs from many tests of the two ORB configurations with various elevon settings.

The ET model was built in accordance with Rockwell International interface control drawing
ICD2-0001, Rev. F. Figure 4a shows the full-scale ET geometry. The ET is of a cylindrical cross-section
with a nominal diameter of 333 inches and a maximum diameter of 336.2 inches. The forward portion of
the ET has a tangent ogive nose which terminates in a biconic nose cap over the liquid oxygen (lox) vent
valve. Structural stiffeners on the intertank between the lox and liquid hydrogen (LH;) tanks result in an
area with a slightly larger than nominal diameter, which is simulated on the test model. The aft end of
the tank was basically an ellipsoid of revolution. The entire ET is covered with spray-on thermal protec-
tion system (TPS), foam-type insulation of varying thickness. Approximate thicknesses are 2.5 inches on
the tangent ogive nose, 1.0 inch on the cylindrical sections, and 2.0 inches on the aft dome. Model
dimensions include this TPS layer. The ET flight configuration includes a number of protuberances
which consist of electrical trays, propellant feedlines, and attach hardware. Electrical trays which run
parallel to the ET centerline were simulated; some of those adjacent to the aft ORB/ET attach hardware
were not. The lox and LH; feedlines were simulated. The attach hardware between the ORB/ET and
ET/SRB’s were also simulated. The forward ET/ORB attach strut was not scaled in the x-direction along
the vehicle. This was due to the loads the ORB model would see in the mated vehicle configuration.

The SRB models were built to the same interface control drawing (ICD2-0001, Rev. F) as the
ET. Figure 4b shows the SRB geometry. The two SRB’s are 146-inch diameter cylinders, each with an
18° semivertex angle nose cone terminated by a 13.27-inch diameter spherical cap. An 18° flared skirt,
208.20 inches in diameter at the trailing edge, was simulated. The rocket nozzle and base thermal shield
were not simulated on the model. SRB protuberances consist of a forward attach lug, front and rear sepa-
ration motors, an aft attach ring, various stiffener rings, integrated electronics assembly (IEA) box, and a
full-length electrical systems tunnel. All of these protuberances were simulated on the model.

Figure 7 shows the 0.004-scale space shuttle launch vehicle model mounted in the trisonic wind
tunnel.

Shadowgraph System

The 14-x14-inch wind tunnel’s shadowgraph system consists of a spark source, multiple film
holders, and a mounting bracket for the holders. The spark source is mounted on one side with the
mounting bracket/film holder on the other side of the test section. Glass wall inserts are installed in the
transonic test section, while the supersonic test section has conventional windows. The spark source is
fired, exposing the film, thus producing a shadowgraph. Figure 8 shows a sketch of the shadowgraph
setup.

Without flow, the spark source shines through the test section containing stagnant air and illumi-
nates the film with uniform intensity. When the tunnel is started and flow passes through the test section,
the light beam will be refracted wherever there is a density gradient. A constant gradient, an empty test
section, or no flow in the test section will result in every light ray being refracted evenly, producing no
change on the film (figs. 9 and 10). Only if there is a variation in the density gradient will the light from



the spark source converge or diverge. A picture of the instantaneous density gradients will be shown on
the film when the spark source is fired (figs. 11 and 12). The shadowgraph easily allows shock waves to
be seen. The second derivative of density is positive in the forward region of the shock and negative in
the aft region. A shock wave is not infinitely thin. The shadowgraph film will show the shock wave as a
dark line followed by a white line.

The shadowgraph system used for the 14-x14-inch wind tunnel is explained in detail in reference
9. Reference 9 also explains the theory behind the system and the supporting tests done to initially verify
the system. This reference also explains the effects of the glass walls on the shadowgraph. This appears
on the shadowgraph to look something like cross hatching in the subsonic and sonic Mach range. Cur-
rently, only the single film method, not the multiple exposure roll which is also shown in reference 9, is
used. Kodak™ Tri-X pan, 8- by 20-inch black and white professional film is used for the shadowgraphs.

SHADOWGRAPH DESCRIPTION

The shadowgraph is a flow visualization technique that shows the second spatial derivative of the
density field or the gradient of the density gradient. The shadowgraph is used to show boundary layers,
flow separation, and shock wave formations. All flow visualization techniques are dependent on varia-
tion in the flow fields density. An interferometer measures the density level with regard to a reference.
The fringe shifts are counted to obtain the density variations. A Schlieren system shows the gradient in
density or the first x-derivative. The shadowgraph system is easy to use, and the relative shock strengths
are easily seen, but the actual density levels cannot be obtained.

Boundary layers and separated regions are easily seen in shadowgraphs if the flow field density
is not too low. The density changes across shocks, and expansions waves are functions of Mach number
and are configuration dependent. The density gradients of the flow are dependent on the ratios of up-
stream and downstream flow fields. Low-density flow fields are not as discernible as high-density flow
in the shadowgraphs. The shadowgraph system and its relation to other optical flow methods are dis-
cussed in reference 10. Further details concerning shadowgraphs and their application to launch vehicle
aerodynamic study are found in reference 11.

SHADOWGRAPH ENGINEERING INTERPRETATIONS

These visual representations of the flow have been used in conjunction with launch vehicle aero-
dynamic analyses to gain a better understanding of the aerothermodynamic environments.

Shadowgraphs are presented for the trisonic range of Mach numbers for the space shuttle. The
effects of Mach number, angle-of-attack, and angle-of-sideslip are shown. The shadowgraphs presented
are of great use in the analysis of the aerodynamic characteristics of the SSLV. A greater understanding
of the pressure distributions for the SSLV can be gained from these shadowgraphs.

The SSLYV is a multibody configuration which inherently results in significant flow interactions
between each of its primary elements: the ORB, ET, and SRB’s. Part of this interaction is due to the
intersection of the bow shock waves off each of the elements. This can be seen in figures 11 and 12, top
and side views. Notice the region of high interactions at the forward attach structure between the ORB



and the ET. Also note the area between the ORB and the ET contains a large variation in flow field
characteristics discernible by the patterns on the shadowgraphs.

Because of the bluntness of the space shuttle vehicle, the primary bow shocks at low supersonic
Mach numbers are detached and appear as vertical lines forward of the vehicle. As Mach number
increases, the angle of the shock wave increases, changing from the appearance of a vertical line, a
normal shock, to that of an oblique line, an oblique shock. At approximately Mach 1.96, the bow shock
off the ET becomes attached.

At the higher Mach numbers, the shadowgraphs appear to be clearer and shock waves more pro-
nounced. This is due to the larger density variation fore and aft of the shock.

Compare the mated vehicle shadowgraphs to those in appendix A and appendix B. Appendix A
contains shadowgraphs of the ORB alone at angles-of-attack of -2°, 0°, and 2° at Mach numbers of 1.25,
1.46, and 1.96. Appendix B contains shadowgraphs of the SSLV lower stack only, the ET with the two
SRB'’s attached, at the corresponding angles of attack and Mach numbers as those of the ORB in appen-
dix A. The shadowgraphs in these two appendices show the shock waves and flow fields around the
individual elements. When the individual elements are compared to the mated vehicle, the large inter-
actions between elements are evident.

Appendix C contains a study® done during the intermediate stages of STS development concern-
ing the ET nose geometry. This study is presented to show how the geometry of the ET’s nose affects
the bow shock off the ET and the subsequent interactions between the SSLV flow fields. Figure Cl1is a
photograph of the ORB and the five nose geometries tested. Notice the ORB geometry, the spine down
the back of the ORB. This was an intermediate ORB configuration. A photograph of each mated vehicle
configuration is presented followed by the corresponding shadowgraph in this appendix. These shadow-
graphs were taken at a Mach number of 3.48. No attach structure was present for these shadowgraphs,
since no attach structure had been determined at the time of this test. Therefore, the attach structure
interactions with the SSLV flow fields disrupting the ET nose geometry’s effects cannot be seen. The
elements were mounted in proximity using individual stings for the ORB and the lower stack. Notice
how the shock wave contour changes with the different ET’s noses. This is due to the change in pressure
fields about the ET’s nose resultant from the nose geometry.

The shock wave off the nose of the ORB and the shock from the transition of the nose to cockpit
interact at supersonic Mach numbers. The strong shock off the cockpit at these supersonic Mach num-
bers causes the nose shock and ET bow shock to diminish. The angle of these shocks is also aftected by
their encounter with the shock wave off the cockpit. These effects are easily seen when comparing fig-
ures 11 and 38.

The oblique shock seen at transonic speeds at the nose/cockpit junction (fig. 11) is resultant from
the large turning angle the flow encounters at the cockpit.

The shock off the ORB tail is also readily visible. A region of separated flow occurs at the for-
ward base of the tail due to the tail not being faired into the body. The flow encounters a step at the base
of the tail (fig. 11). The OMS pods located on the boattail, port, and starboard of the vertical tail form
shocks. The OMS pod’s shocks are blocked from view by the ORB’s tail and are not pronounced
enough to be discernible at the base of the vehicle.



The SRB stiffener rings near the base of the booster form some noticeable disturbances in the
flow. These disturbances are not strong shocks, but rather weaker Mach waves resulting from dis-
turbances within the boundary layer.

The shadowgraphs taken with the STS at a roll angle of 90°, providing a top view of the vehicle,
show the shock waves off the leading edge of the ORB’s wings, the ET’s bow shock, and the SRB’s
bow shocks. Notice the SRB’s shocks impinge on the ET in the ET’s intertank region. These shocks
cause a large pressure gradient on the intertank region. The shock off the nose of the ORB is discernible
as the two light lines come together between the bow shocks of the ET and the ORB wings leading edge
(fig. 12).

The flow phenomena around the SSLV configuration, as seen in a typical shadowgraph, is shown
in figure 13. This figure is the same shadowgraph as figure 11 but with the major points of the flow field
highlighted.

It should be noted that boundary layer effects cannot accurately be determined from a scale
model of a vehicle, since boundary layers do not scale as the aerodynamic characteristics do.

Due to the complex nature of the base region of the vehicle, as can be seen in the shadowgraphs,
the flow fields interact and a clear picture of the causes of the flow field disturbances become difficult to
discern. A description/interpretation of the flow fields in this region would be of question because of the
interaction of the stings with the base of the model.

CONCLUSIONS

A compilation of shadowgraphs taken at the NASA MSFC’s 14-x14-inch trisonic wind tunnel
over the past 15 years is presented. The enclosed shadowgraphs present a pictorial view of the flow
fields over the STS configuration. They have been used throughout the development of the space shuttle
program in conjunction with launch vehicle aerodynamic analyses to gain a better understanding of the
aerothermodynamic environments.

This report presents the shadowgraphs in a concise format, offers a means of easy transfer of the
data to interested parties, and documents the results for future study. ‘
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Figure 1. MSFC’s 14-x14-inch trisonic wind tunncl facility.
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Figure 8. Sketch of the spark shadowgraph setup.
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ORBITER
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0, beta = 0, roll = 0.

Figure A-2. SSLV ORB Mach 1.25, alpha
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APPENDIX B
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2, beta =0, roll = 0.

gure B-3. SSLV lower stack Mach 1.46, alpha =

1
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APPENDIX C

ET NOSE STUDY






Figure C-1. Noses tested during the ET nose study.
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Figure C-4. SSLV with nose T9.
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